来自 教育 2019-09-09 17:57 的文章

创业1年我对线下教育及AI+教育的理解与剖析

  笔者结合自己的教育创业经验,为我们分析了K12教育发展现状、线下教育存在的问题及痛点以及AI +教育教学辅助系统 解决方案。

  读书时代,不管是学校演讲抑或是实习演讲,我一定会提到:“人这一生,总要为梦想奋不顾身一次”。

  或许是我在人大附中或北大附中实习时,深感教育信息化对校园工作带来的便利,抑或是在京东工作时打开了我对人工智能相关应用的新思路,又因为我的专业研究方向是人工智能,让我对人工智能+教育有着深深的情怀。

  K12教育,全称kindergarten through 12 grade,是指幼儿园到十二年级。不过在中国,K12教育更多的是指小学6年、初中3年、高中三年共12年的基础教育。涵盖课外辅导、培训以及学校信息化。K12教育可以分为线教育主要分为教育内容类、教育工具类、教育平台类、综合性教育以及教育信息化。

  (每学期平均花费6000元,月入上万的家庭每学期教育支出是9638元)(数据来源:企鹅智库)

  2)二胎开放,早教市场家长目标明确,投入占比高,K12教育业必定有着基数上的上涨。

  3)中小学仍然以文化课补习为重点,随着年龄的增加,选择增加 教育投入比例有所下降。

  相对早教,中小学生家长对价格稍微敏感一些。但“学有所得”仍然是教培机构的核心竞争力。

  4)在线课程仍然只占据小部分的市场份额,但越高收入的知识分子家庭,对在线教育的接受程度越高。上课时间灵活;上课地点灵活;名师授课是线上课程吸引报名的关键因素。线下靠口碑,线上靠广告。过半的家长接受线上与线下的结合。

  目前K12线下教育仍然处于红利期,巨头机构 好未来和新东方不过占据了市场份额的5%不到。

  区域龙头,如北京的高思教育,深圳的思考乐,多数都是深耕当地,少数跨区域经营。

  创业之初,对学而思和新东方两大巨头,也有一些了解,以下为自我理解 两大巨头的发展历程以及核心竞争力对比(仅供参考):

  2)好未来是传统教培机构中最先具有互联网思维的,至今也是走在科技前列的,其使命为“用科技推动教育进步”

  3) 新东方自成立到学而思成立这十年前 一致专注于外语考试培训,已然成为中国教育龙头企业,但后起之秀好未来在新的时代背景下依靠理科培训迅速成为教育行业又一大龙头企业。

  4)新东方通过暑假免费班撬开K12文化课培训市场,好未来被迫紧随其后,但该措施后期却成为新东方、好未来这两大巨头进行行业垄断的利器。中小学机构在行业龙头的强大攻势下,生存环境进一步恶劣。

  5)好未来是传统企业里面最具有互联网基因和敏锐的嗅觉的,率先在AI+教育方面加大研发力度,相信在教育的三大角色(老师,学生,家长)之外,人工智能的崛起将成为教育的第四级。

  好未来的“大后台,小前台”,将大部分精力放在教材的研发上,认为优质的,标准化的课程体系才是教育企业的核心竞争力。新东方实行搭班制度,也即将学科领域再细分,例如托福课程,可能会分成听力、写作、阅读、语法等等,不同老师都只负责其中的某一块。专业细分使得每一位老师不断打磨细分部分的教研水平,力求达到极限水平。

  好未来“去名师化”,传统教育行业对名师的依赖很大,但名师业成为限制或威胁教育机构发展的重要一环。(好未来多为培养985,211应届生),而新东方早期新东方通过制造明星老师圈得了大量学生的追捧,所以也称为优秀教师的“黄埔军校”,所以新东方早期培养了一大批优秀的教育培训人才,这些人才后面成了教育初创领域的生力军。如跟谁学的陈向东,之前就是新东方教育科技集团执行总裁。

  好未来用多维的指标来对教师进行考核(留存率,退费率,满班率,家长满意度),指标直接影响老师的课时费,约束老师注重教学的同事也要注重服务。

  好未来首创培优模式,也即对学生进行测试,只收成绩前 20%-30%的学生。成绩好的学生自驱力高,通过培训更能达到提分的目的,反之,优秀学生的高升学率又能给好未来带来好口碑,从而形成良性循环。新东方由于在K12领域后起于好未来,当时只能打差异化战略。在教育界,还有更多的学生需要的是“补差”。

  好未来更趋向于从更低年级学生入手,学员自然升学带来的高续班率帮助好未来降低招生成本。新东方由于其历史原因,其主要服务高中学生,需要不断投入来获取新学员。总结

  由于互联网资讯的发达,传统招生方式“发传单”、“地推”已经越来越难做。

  缺乏新型互联网营销人才,开拓互联网营销之路(线下教育培训机构由于其线下的属性,很难吸引到互联网营销、新媒体运营方面的人才)。

  招新成本过大,目前招新的策略不外乎“免费班”、“老带新让利”,每种招新的方式成本都很高。

  既然招新成本居高不下,那么教培机构必然十分重视教育学生留存问题。线下教培机构学生多,课程多,老师们精力有限,根本无法顾及到每位学生。无法实现一对一指导,学生流失,对线下教培机构来说,是一件很“正常”的事。

  A. 对于成绩没提升的,及时预警。如在学校大考、小考时间节点前,对学生进行成绩预警,再有针对性的加强。

  B. 对于学生维护不足的,及时预警。设置评判维度,如是否有每日一练,是否有每周小测及测试分析等。

  C. 对于学生学校负担过重的,需要我们建立个性化学习路径和题库,对于大多数学生来说,她们都不是不愿学习,而是不愿无效学习!

  学生成绩的提升是由多方面因素造成的,而非单一的教学质量。但传统线下机构,大多数家长都是以学生成绩的提升来评判一个机构的教学质量的。教学质量不理想,家长换机构,很正常。

  事实上,大部分家长很清楚,学生成绩的提高是需要长期性的,并且影响因素很多,所以其实家长在意的东西有两个:

  数据的建立就显得尤为重要,学生留存率,学生进步率,家长满意度等多项维度。

  我在任职期间,就建立了多项维度来考核教师,并直接与课时费相关联。用数据约束。

  风控方面:学生在学习过程中和老师的关系是最亲密的,包括家长,也是直接和老师进行沟通,不认机构,只认老师的现象一直存在,而现状是大多数机构都任由任课老师发展,有的任课老师教学质量高,家长反馈好,但老师离职的话,学生也会流失部分。在不多的生源上,就是雪上加霜的事情。

  从上一部分分析学而思、新东方的发展历程和核心竞争力,我们可以得到启发:“建立标准统一的教学教研体系,以及标准化的教学流程,才是削弱名师效应给机构带来不好影响的法宝。”

  在教育的三大角色(老师,学生,家长)之外,人工智能的崛起将成为教育的第四极。

  过去乃至现在,我们所了解的AI技术在教育行业的应用,多以功能组件形式存在,体现的是AI能力和组件层输出的单维能力,例如拍照判题、语音评测、人脸签到等。

  而我 针对线下教育所存在的痛点,针对AI在教学方面提出新的解决方案,希望可以帮助中小型教育机构线. 中国“AI+教育”具备全球领先的机会

  国务院发布《新一代人工智能发展规划》,将人工智能写入国策,后续发布的《中国教育现代化2035》,进一步强化了人工智能在教育现代化中的重要意义。且中国计算机和AI人才正处于爆发期。这样的时代背景,都有助于AI+教育的快速发展。

  基于以上的时代背景和理念,我大胆地在教学全流程种应用AI教育,具体如图所示:

  现实中的磨课能难做到磨一整节课,因为听课教师精力有限,但磨十分钟或者磨译者知识点又难以得到真正的成长。

  利用基于班级或个体的学情,通过计算机视觉,自然语言处理,数据挖掘等人工智能技术,为教师生成个性化的教案,包括教学计划,对应课件,并且能根据学生学习过程中产生的新的学情,再次做出调整。

  老师布置了作业很难有时间一个个的仔细检查,一对一的讲解错题,讲解完了以后也不能及时找到同类型的题进行验证,而老师布置了作业不及时检查,不及时讲解,学生久而久之就不会再做这个作业。

  根据学生之前产生的学习数据,利用知识图谱,深度学习的算法,精准定位每一位学生知识点的掌握程度、认知等级与薄弱点,构建学生“学情数据画像”档案, 用数据指导学生“定向学习,精准作业(作业减负)”,帮助学生“减负增效”,告别“题海战 术”。“学生不是不愿意做题,而是不愿做无效习题!”

  基于图像识别、自然语言处理、 数据挖掘等人工智能技术,采集汇总学生考试结果,分析不同知识点弱项,进而形成学生学情报告,为老师个性化辅导提供了建议,且也为营销新生或做续班提供了有效的教学可视化数据。

  基于手写识别,自然语言处理等技术,实现客观题及主观题的自动批改及赋分,大幅提升阅卷速度。

  学生成绩预警:根据对学生个体成绩数据的沉淀和分析,对于成绩不好的学生提前进行预警,如根据该学生的表现,预测该学生可能会期末考试考不好,那么对于这类学生进行预警,同时对任课老师,家长采取行动,降低家长满意度,尽可能的提高分数!

  在上述我所想到的应用场景,其实某些大公司已经在实施或者有部分已经成型,但随着人工智能技术的深入发展,覆盖“教研”“教学”“作业”“考试”“成绩管理”一整套的解决方案也终究会呈现出来。而其技术的实现的背后,需要依靠大量数据的积累以及AI人才的付出,单凭几个人是完全不够的。

  而我之前研究的是:学生成长轨迹预测,主要是通过找到与学生成绩表现关联最大的几个因素,如考勤;作业完成情况;知识点遗漏情况,各类考试情况,设置最小支持度和最小置信度,判断哪几个因素和学期成绩表现是强关联,提取这些因子,也就是提取大量影响成绩的因素,然后获取大量学生的这些数据进行训练生成训练模型,然后对未知学生的成绩进行分类预测。

  通俗的说,就是通过已知学生的成绩变化曲线去预测一个跟他成长轨迹很相似的学生的未来发展情况。

  再通俗点说,就是你妈妈经常跟你说的一句话“你再这样下去,以后就只能和谁谁谁一样最后只能读大专啦!!!”,那妈妈其实是凭借着妈妈的经验来说的,妈妈对比了你过往的表现,然后和她脑袋里面所知晓的街坊邻居的孩子进行了对比,发现了一个和你成长情况最像的孩子,于是她告诉你,你以后也会成为这样的人。

  那么利用人工智能的算法去做这件事。首先,我们评判的维度是量化的,而非感性的;其次,我们系统里,拥有大量的学生的各维数据,数据越多,能够找到的和你成长轨迹最接近的概率越大,那么对你以后的成长的预测也就越准确!

  另外,个性化测评以及自适应学习,目前有很重要的一环是:对系统预设的知识点进行多维度的打标签,并形成知识图谱,以及她们之间的相互关系,这个图谱能让系统更好的决定哪个内容才是更适合学生的。

  要做好这个数据沉淀,还是需要在教研界摸爬滚打纪念才能有这样打标签和形成数据沉淀的能力,或者跟大公司合作。

  说白了,个性化测评的重要一环是对知识点进行尽可能小的力度的拆解,再利用计算机视觉和自然羽然处理等技术确定孩子的学习情况,而自适应学习是基于一定规则的学习路径动态规划,是否真正能做到自适应学习,取决于规则制定的简单还是复杂。目前在这条路上,所有的公司,所有的AI技术从业员都有很长的路要走。

  整体来说,我认为AI+教育是一个极具前景也富有情怀的发展方向。通过AI技术,不仅能够实现“千班千面”甚至“千人千面”的教学方法,真正做到“因材施教,教育减负”,同时也能高效的帮助老师完成一部分的教学管理工作,让老师更多的精力放在辅导和育人上面。同时也能够一发部分程度的实现教育平等,让人人都有资格享受更好更优质的教育!

  资源整合能力超强的互联网巨头,拥有技术,资源,入口,应该会比较容易通过2B的场景进入AI+教育场景。

  人工智能技术提供商,教育痛点天然存在,而解决方案大同小异,所以突出重围的重点在于教育的根基加上AI技术的纵向深耕。

  计算平台,AI技术的相关应用,需要大量数据作为支撑,必然需要技术平台为其计算,训练模型提供坚实的基础。

  以上,是我对线下教育以及AI+教育的理解和剖析,虽然年轻气盛,有很好的想法,但无奈被现实的工作压力压昏了头,很多创意未实现,或者还在摸索中,但对教育事业的热爱,对AI+教育事业的憧憬,在激励着我不断前行,未来,不管在哪里,继续加油!

  人人都是产品经理(是以产品经理、运营为核心的学习、交流、分享平台,集媒体、培训、社群为一体,全方位服务产品人和运营人,成立8年举办在线+期,线+场,产品经理大会、运营大会20+场,覆盖北上广深杭成都等15个城市,在行业有较高的影响力和知名度。平台聚集了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一起成长。